


## **IMAGE**

## **COMT** haplotype variation affects human prefrontal function

A Meyer-Lindenberg<sup>1,2,3</sup>, T Nichols<sup>4</sup>, JH Callicott<sup>2,3</sup>, J Ding<sup>4</sup>, B Kolachana<sup>3</sup>, J Buckholtz<sup>2,3</sup>, VS Mattay<sup>2,3</sup>, M Egan<sup>3</sup> and DR Weinberger<sup>3</sup>

<sup>&</sup>lt;sup>1</sup>Unit for Systems Neuroscience in Psychiatry, National Institute of Mental Health, NIH, DHHS, Bethesda, MD, USA; <sup>2</sup>Neuroimaging Core Facility, National Institute of Mental Health, NIH, DHHS, Bethesda, MD, USA; <sup>3</sup>Clinical Brain Disorders Branch, Genes, Cognition and Psychosis Program, National Institute of Mental Health, NIH, DHHS, Bethesda, MD, USA and <sup>4</sup>Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA



Molecular Psychiatry (2006) 11, 797. doi:10.1038/sj.mp.4001881

Impact of a two-SNP (rs2097603–rs4680) COMT haplotype on working memory-related brain activation, with estimated effect sizes. For more information on this topic, see the article by A Meyer-Lindenberg and co-workers on pages 867–877.